enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/ClausiusClapeyron_relation

    The Clausius–Clapeyron relation describes a Phase transition in a closed system composed of two contiguous phases, condensed matter and ideal gas, of a single substance, in mutual thermodynamic equilibrium, at constant temperature and pressure. Therefore, [8]: 508. Using the appropriate Maxwell relation gives [8]: 508 where is the pressure.

  3. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  4. Boiling-point elevation - Wikipedia

    en.wikipedia.org/wiki/Boiling-point_elevation

    The extent of boiling-point elevation can be calculated by applying Clausius–Clapeyron relation and Raoult's law together with the assumption of the non-volatility of the solute. The result is that in dilute ideal solutions, the extent of boiling-point elevation is directly proportional to the molal concentration (amount of substance per mass ...

  5. Antoine equation - Wikipedia

    en.wikipedia.org/wiki/Antoine_equation

    The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine [fr] (1825–1897). [1]

  6. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    m = mass of each molecule (all molecules are identical in kinetic theory), γ (p) = Lorentz factor as function of momentum (see below) Ratio of thermal to rest mass-energy of each molecule: θ = k B T / m c 2 {\displaystyle \theta =k_ {\text {B}}T/mc^ {2}} K2 is the modified Bessel function of the second kind.

  7. Vapour pressure of water - Wikipedia

    en.wikipedia.org/wiki/Vapour_pressure_of_water

    The coefficients given here correspond to equation 21 in Alduchov and Eskridge (1996). [2] See also discussion of Clausius-Clapeyron approximations used in meteorology and climatology. Tetens equation = ⁡ (+) T is in °C and P is in kPa The Buck equation.

  8. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    The Clausius theorem (1855), also known as the Clausius inequality, states that for a thermodynamic system (e.g. heat engine or heat pump) exchanging heat with external thermal reservoirs and undergoing a thermodynamic cycle, the following inequality holds. where is the total entropy change in the external thermal reservoirs (surroundings), is ...

  9. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, Keq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, ΔrH⊖, for the process. The subscript means "reaction" and the superscript means "standard". It was proposed by Dutch chemist Jacobus Henricus van 't Hoff in 1884 in his book ...