Search results
Results from the WOW.Com Content Network
Forced convection by a fan in a snow machine. Forced convection is a mechanism, or type of transport, in which fluid motion is generated by an external source (like a pump, fan, suction device, etc.). Alongside natural convection, thermal radiation, and thermal conduction it is one of the methods of heat transfer and allows significant amounts ...
Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow ).
The Dittus-Bölter correlation (1930) is a common and particularly simple correlation useful for many applications. This correlation is applicable when forced convection is the only mode of heat transfer; i.e., there is no boiling, condensation, significant radiation, etc. The accuracy of this correlation is anticipated to be ±15%.
The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]
In forced convection the Reynolds number governs the fluid flow. But, in natural convection the Grashof number is the dimensionless parameter that governs the fluid flow. Using the energy equation and the buoyant force combined with dimensional analysis provides two different ways to derive the Grashof number.
The first case is when natural convection aids forced convection. This is seen when the buoyant motion is in the same direction as the forced motion, thus accelerating the boundary layer and enhancing the heat transfer. [5] Transition to turbulence, however, can be delayed. [6] An example of this would be a fan blowing upward on a hot plate.
The Stanton number (St), is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.