enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Dataset HF card, and project's GitHub repository. [393] Diggelmann et al. Climate News dataset A dataset for NLP and climate change media researchers The dataset is made up of a number of data artifacts (JSON, JSONL & CSV text files & SQLite database) Climate news DB, Project's GitHub repository [394] ADGEfficiency Climatext

  3. Open Neural Network Exchange - Wikipedia

    en.wikipedia.org/wiki/Open_Neural_Network_Exchange

    The Open Neural Network Exchange (ONNX) [ˈɒnɪks] [2] is an open-source artificial intelligence ecosystem [3] of technology companies and research organizations that establish open standards for representing machine learning algorithms and software tools to promote innovation and collaboration in the AI sector. ONNX is available on GitHub.

  4. Flux (machine-learning framework) - Wikipedia

    en.wikipedia.org/wiki/Flux_(machine-learning...

    Flux is an open-source machine-learning software library and ecosystem written in Julia. [1] [6] Its current stable release is v0.15.0 [4] .It has a layer-stacking-based interface for simpler models, and has a strong support on interoperability with other Julia packages instead of a monolithic design. [7]

  5. JAX (software) - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  6. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  7. ML.NET - Wikipedia

    en.wikipedia.org/wiki/ML.NET

    ML.NET is a free software machine learning library for the C# and F# programming languages. [4] [5] [6] It also supports Python models when used together with NimbusML.The preview release of ML.NET included transforms for feature engineering like n-gram creation, and learners to handle binary classification, multi-class classification, and regression tasks. [7]

  8. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe is being used in academic research projects, startup prototypes, and even large-scale industrial applications in vision, speech, and multimedia. Yahoo! has also integrated Caffe with Apache Spark to create CaffeOnSpark, a distributed deep learning framework.

  9. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    In 2016 Machine Learning Infrastructure team led by Anna Dorogush started working on Gradient Boosting in Yandex, including Matrixnet and Tensornet. They implemented and open-sourced the next version of Gradient Boosting library called CatBoost, which has support of categorical and text data, GPU training, model analysis, visualisation tools.