enow.com Web Search

  1. Ads

    related to: countable and uncountable practice pdf worksheets 3rd graders
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Projects

      Get instructions for fun, hands-on

      activities that apply PK-12 topics.

    • Free Resources

      Download printables for any topic

      at no cost to you. See what's free!

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

    • Try Easel

      Level up learning with interactive,

      self-grading TPT digital resources.

Search results

  1. Results from the WOW.Com Content Network
  2. Countable set - Wikipedia

    en.wikipedia.org/wiki/Countable_set

    In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. [a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time ...

  3. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  4. Infinite set - Wikipedia

    en.wikipedia.org/wiki/Infinite_set

    The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. [1] It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.

  5. Ordinal number - Wikipedia

    en.wikipedia.org/wiki/Ordinal_number

    The set of all α having countably many predecessors—that is, the set of countable ordinals—is the union of these two number classes. Cantor proved that the cardinality of the second number class is the first uncountable cardinality. [12] Cantor's second theorem becomes: If P ′ is countable, then there is a countable ordinal α such that ...

  6. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    Uncountable set. In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers.

  7. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    ℵ 0 (aleph-nought, aleph-zero, or aleph-null) is the cardinality of the set of all natural numbers, and is an infinite cardinal. The set of all finite ordinals, called ω or ω0 (where ω is the lowercase Greek letter omega), has cardinality ℵ 0. A set has cardinality ℵ 0 if and only if it is countably infinite, that is, there is a ...

  8. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    The title of the article, " On a Property of the Collection of All Real Algebraic Numbers " ("Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen"), refers to its first theorem: the set of real algebraic numbers is countable. Cantor's article was published in 1874. In 1879, he modified his uncountability proof by using the ...

  9. Noun - Wikipedia

    en.wikipedia.org/wiki/Noun

    Noun. In grammar, a noun is a word that represents a concrete or abstract thing, such as living creatures, places, actions, qualities, states of existence, and ideas. A noun may serve as an object or subject within a phrase, clause, or sentence. [1][note 1]

  1. Ads

    related to: countable and uncountable practice pdf worksheets 3rd graders