Search results
Results from the WOW.Com Content Network
The biologically inspired Hodgkin–Huxley model of a spiking neuron was proposed in 1952. This model describes how action potentials are initiated and propagated. . Communication between neurons, which requires the exchange of chemical neurotransmitters in the synaptic gap, is described in various models, such as the integrate-and-fire model, FitzHugh–Nagumo model (1961–1962), and ...
The spiking neuron model by Nossenson & Messer [72] [73] [74] produces the probability of the neuron firing a spike as a function of either an external or pharmacological stimulus. [72] [73] [74] The model consists of a cascade of a receptor layer model and a spiking neuron model, as shown in Fig 4. The connection between the external stimulus ...
Brian is aimed at researchers developing models based on networks of spiking neurons. The general design is aimed at maximising flexibility, simplicity and users' development time. [2] Users specify neuron models by giving their differential equations in standard mathematical form as strings, create groups of neurons and connect them via ...
The firing neuron described above is called a spiking neuron. We will model the electrical circuit of the neuron in Section 3.6. There are two types of spiking neurons. If the stimulus remains above the threshold level and the output is a spike train, it is called the Integrate-and-Fire (IF) neuron model.
The following example simulates spiking activity in a sparse random network with recurrent excitation and inhibition [1] The figure shows the spiking activity of 50 neurons as a raster plot. Time increases along the horizontal axis, neuron id increases along the vertical axis. Each dot corresponds to a spike of
The spike response model (SRM) [1] is a spiking neuron model in which spikes are generated by either a deterministic [2] or a stochastic [1] threshold process. In the SRM, the membrane voltage V is described as a linear sum of the postsynaptic potentials (PSPs) caused by spike arrivals to which the effects of refractoriness and adaptation are added.
The Galves–Löcherbach model (or GL model) is a mathematical model for a network of neurons with intrinsic stochasticity. [ 1 ] [ 2 ] In the most general definition, a GL network consists of a countable number of elements (idealized neurons ) that interact by sporadic nearly-instantaneous discrete events ( spikes or firings ).
The exponential integrate-and-fire model (EIF) is a biological neuron model, a simple modification of the classical leaky integrate-and-fire model describing how neurons produce action potentials. In the EIF, the threshold for spike initiation is replaced by a depolarizing non-linearity.