Search results
Results from the WOW.Com Content Network
German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." [ 1 ] Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers ), or defined as generalizations of the ...
1. The class number of a number field is the cardinality of the ideal class group of the field. 2. In group theory, the class number is the number of conjugacy classes of a group. 3. Class number is the number of equivalence classes of binary quadratic forms of a given discriminant. 4. The class number problem. conductor
Despite being marketed as a supplement, several titles have become widely used as primary textbooks for courses [citation needed] (the Discrete Mathematics and Statistics titles are examples). This is particularly true in settings where an important factor in the selection of a text is the price, such as in community colleges.
Composite number. Highly composite number; Even and odd numbers. Parity; Divisor, aliquot part. Greatest common divisor; Least common multiple; Euclidean algorithm; Coprime; Euclid's lemma; Bézout's identity, Bézout's lemma; Extended Euclidean algorithm; Table of divisors; Prime number, prime power. Bonse's inequality; Prime factor. Table of ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics).
Traditionally, number theory is the branch of mathematics concerned with the properties of integers and many of its open problems are easily understood even by non-mathematicians. More generally, the field has come to be concerned with a wider class of problems that arise naturally from the study of integers.
Mathematical chemistry [1] is the area of research engaged in novel applications of mathematics to chemistry; it concerns itself principally with the mathematical modeling of chemical phenomena. [2] Mathematical chemistry has also sometimes been called computer chemistry , but should not be confused with computational chemistry .