Search results
Results from the WOW.Com Content Network
One has a hyperboloid of revolution if and only if =. Otherwise, the axes are uniquely defined (up to the exchange of the x-axis and the y-axis). There are two kinds of hyperboloids. In the first case (+1 in the right-hand side of the equation): a one-sheet hyperboloid, also called a hyperbolic hyperboloid.
The function is a continuous ... For < < we find >, a positive hyperbolic angle. For a fluctuation take a new price < <. Then the change in u is: = . Quantifying ...
Once a suitable ideal triangulation is found, SnapPea can try to find a hyperbolic structure. In his Princeton lecture notes, Thurston noted a method for describing the geometric shape of each hyperbolic tetrahedron by a complex number and a set of nonlinear equations of complex variables whose solution would give a complete hyperbolic metric ...
For example, a hyperboloid of one sheet is a quadric surface in ruled by two different families of lines, one line of each passing through each point of the surface; each family corresponds under the Plücker map to a conic section within the Klein quadric in .
The Weierstrass coordinates of a point are the Cartesian coordinates of the point when the point is mapped in the hyperboloid model of the hyperbolic plane, the x-axis is mapped to the (half) hyperbola ( , , +) and the origin is mapped to the point (0,0,1). [1]
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh(x/a) is the catenary, the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
Pseudo-range multilateration, often simply multilateration (MLAT) when in context, is a technique for determining the position of an unknown point, such as a vehicle, based on measurement of biased times of flight (TOFs) of energy waves traveling between the vehicle and multiple stations at known locations.
For positive ν, the half-hyperboloid is above the x-y plane (i.e., has positive z) whereas for negative ν, the half-hyperboloid is below the x-y plane (i.e., has negative z). Geometrically, the angle ν corresponds to the angle of the asymptotes of the hyperbola. The foci of all the hyperbolae are likewise located on the x-axis at ±a.