Search results
Results from the WOW.Com Content Network
The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on a wall in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.
Top: The charge is at rest in frame F, so this observer sees a static electric field.An observer in another frame F ′ moves with velocity v relative to F, and sees the charge move with velocity −v with an altered electric field E due to length contraction and a magnetic field B due to the motion of the charge.
An observer at rest with respect to a system of static, free charges will see no magnetic field. However, a moving observer looking at the same set of charges does perceive a current, and thus a magnetic field. That is, the magnetic field is simply the electric field, as seen in a moving coordinate system.
Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport
In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero.
The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric (which describes an uncharged, rotating mass) by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell ...
where is the exterior derivative, is the Hodge star, = + (where is the electric current density, and is the electric charge density) is the 4-current density 1-form, is the differential forms version of Maxwell's equations.
where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential.