enow.com Web Search

  1. Ad

    related to: undergraduate non euclidean geometry examples with answers

Search results

  1. Results from the WOW.Com Content Network
  2. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    The simplest of these is called elliptic geometry and it is considered a non-Euclidean geometry due to its lack of parallel lines. [12] By formulating the geometry in terms of a curvature tensor, Riemann allowed non-Euclidean geometry to apply to higher dimensions. Beltrami (1868) was the first to apply Riemann's geometry to spaces of negative ...

  3. Geometry of Complex Numbers - Wikipedia

    en.wikipedia.org/wiki/Geometry_of_Complex_Numbers

    Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .

  4. Category:Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/.../Category:Non-Euclidean_geometry

    Within contemporary geometry there are many kinds of geometry that are quite different from Euclidean geometry, first encountered in the forms of elementary geometry, plane geometry of triangles and circles, and solid geometry. The conventional meaning of Non-Euclidean geometry is the one set in the nineteenth century: the fields of elliptic ...

  5. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    While Lobachevsky created a non-Euclidean geometry by negating the parallel postulate, Bolyai worked out a geometry where both the Euclidean and the hyperbolic geometry are possible depending on a parameter k. Bolyai ends his work by mentioning that it is not possible to decide through mathematical reasoning alone if the geometry of the ...

  6. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    A geometry where the parallel postulate does not hold is known as a non-Euclidean geometry. Geometry that is independent of Euclid's fifth postulate (i.e., only assumes the modern equivalent of the first four postulates) is known as absolute geometry (or sometimes "neutral geometry").

  7. Elliptic geometry - Wikipedia

    en.wikipedia.org/wiki/Elliptic_geometry

    The appearance of this geometry in the nineteenth century stimulated the development of non-Euclidean geometry generally, including hyperbolic geometry. Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the interior angles of any triangle is always greater than 180°.

  8. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    In non-Euclidean geometry, the concept of a straight line is replaced by the more general concept of a geodesic, a curve which is locally straight with respect to the metric (definition of distance) on a Riemannian manifold, a surface (or higher-dimensional space) which may itself be curved.

  9. Synthetic geometry - Wikipedia

    en.wikipedia.org/wiki/Synthetic_geometry

    Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulates , and at present called axioms .

  1. Ad

    related to: undergraduate non euclidean geometry examples with answers