enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ionization energy - Wikipedia

    en.wikipedia.org/wiki/Ionization_energy

    Ionization energy trends plotted against the atomic number, in units eV.The ionization energy gradually increases from the alkali metals to the noble gases.The maximum ionization energy also decreases from the first to the last row in a given column, due to the increasing distance of the valence electron shell from the nucleus.

  3. Molar ionization energies of the elements - Wikipedia

    en.wikipedia.org/wiki/Molar_ionization_energies...

    The first molar ionization energy applies to the neutral atoms. The second, third, etc., molar ionization energy applies to the further removal of an electron from a singly, doubly, etc., charged ion. For ionization energies measured in the unit eV, see Ionization energies of the elements (data page). All data from rutherfordium onwards is ...

  4. Ionization energies of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Ionization_energies_of_the...

    The first of these quantities is used in atomic physics, the second in chemistry, but both refer to the same basic property of the element. To convert from "value of ionization energy" to the corresponding "value of molar ionization energy", the conversion is: 1 eV = 96.48534 kJ/mol 1 kJ/mol = 0.0103642688 eV [12]

  5. Effective nuclear charge - Wikipedia

    en.wikipedia.org/wiki/Effective_nuclear_charge

    Most of the physical and chemical properties of the elements can be explained on the basis of electronic configuration. Consider the behavior of ionization energies in the periodic table. It is known that the magnitude of ionization potential depends upon the following factors: The size of atom; The nuclear charge; oxidation number

  6. Rydberg constant - Wikipedia

    en.wikipedia.org/wiki/Rydberg_constant

    In atomic physics, Rydberg unit of energy, symbol Ry, corresponds to the energy of the photon whose wavenumber is the Rydberg constant, i.e. the ionization energy of the hydrogen atom in a simplified Bohr model.

  7. Electron affinity - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity

    The electron affinity (E ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion. X(g) + e − → X − (g) + energy. This differs by sign from the energy change of electron capture ionization. [1]

  8. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    The ionization energy is the minimum amount of energy that an electron in a gaseous atom or ion has to absorb to come out of the influence of the attracting force of the nucleus. It is also referred to as ionization potential. The first ionization energy is the amount of energy that is required to remove the first electron from a neutral atom.

  9. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. The latter can be regarded as the ionization energy of the –1 ion or the zeroth ionization energy. [1]