Search results
Results from the WOW.Com Content Network
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics , which studies the atom as a whole, including its electrons .
David Halliday (March 3, 1916 – April 2, 2010) was an American physicist known for his physics textbooks, Physics and Fundamentals of Physics, which he wrote with Robert Resnick. Both textbooks have been in continuous use since 1960 and are available in more than 47 languages.
Natural nuclear fission reactor; Neutrinoless double beta decay; Neutron capture; Neutron cross section; Neutron emission; Neutron number; Neutron research facility; Neutron transport; Neutron–proton ratio; Nilsson model; Non-extensive self-consistent thermodynamical theory; NPDGamma experiment; Nuclear binding energy; Nuclear clock; Nuclear ...
When this happens, the electron may couple to an excited energy state of the nucleus and take the energy of the nuclear transition directly, without an intermediate gamma ray being first produced. The kinetic energy of the emitted electron is equal to the transition energy in the nucleus, minus the binding energy of the electron to the atom.
Drip lines are defined for protons, neutrons, and alpha particles, and these all play important roles in nuclear physics. The difference in binding energy between neighboring nuclides increases as the sides of the valley of stability are ascended, and correspondingly the nuclide half-lives decrease, as indicated in the figure above.
Harald Anton Enge (September 28, 1920, Fauske Municipality, Nordland, Norway [1] – April 14, 2008, Middlesex County, Massachusetts) [2] was a Norwegian-American experimental nuclear physicist and inventor of instrumentation used in nuclear physics. He is known for the Enge split-pole spectrograph, which became a standard instrument of nuclear ...
Nuclear binding energy increases in proportion to atomic mass number (A), however coulombic repulsion increases with proton number (Z) squared. Thus, at high mass and proton numbers, coulombic repulsion overpowers the nuclear binding forces, and the nucleus is energetically more stable as two separate fragments than as a single bound system.
The liquid drop model is one of the first models of nuclear structure, proposed by Carl Friedrich von Weizsäcker in 1935. [5] It describes the nucleus as a semiclassical fluid made up of neutrons and protons, with an internal repulsive electrostatic force proportional to the number of protons.