Search results
Results from the WOW.Com Content Network
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.
FEATool Multiphysics is a fully integrated physics and PDE simulation environment where the modeling process is subdivided into six steps; preprocessing (CAD and geometry modeling), mesh and grid generation, physics and PDE specification, boundary condition specification, solution, and postprocessing and visualization.
The first step when using the direct stiffness method is to identify the individual elements which make up the structure. Once the elements are identified, the structure is disconnected at the nodes, the points which connect the different elements together. Each element is then analyzed individually to develop member stiffness equations.
In computer science, array is a data type that represents a collection of elements (values or variables), each selected by one or more indices (identifying keys) that can be computed at run time during program execution. Such a collection is usually called an array variable or array value. [1]
The finite element method has been the tool of choice since civil engineer Ray W. Clough in 1940 derived the stiffness matrix of a 3-node triangular finite element (and coined the name). The precursors of FEM were elements built-up from bars (Hrennikoff, Argyris, Turner) and a conceptual variation approach suggested by R. Courant.
For a multidimensional array, the element with indices i,j would have address B + c · i + d · j, where the coefficients c and d are the row and column address increments, respectively. More generally, in a k-dimensional array, the address of an element with indices i 1, i 2, ..., i k is B + c 1 · i 1 + c 2 · i 2 + … + c k · i k. For ...
For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.
The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM), [1] fracture mechanics, [2] and contact mechanics.