Search results
Results from the WOW.Com Content Network
Adaptive delta modulation or Continuously variable slope delta modulation (CVSD) is a modification of DM in which the step size is not fixed. Rather, when several consecutive bits have the same direction value, the encoder and decoder assume that slope overload is occurring, and the step size becomes progressively larger.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Examples of pulse shapes: (a) rectangular pulse, (b) cosine squared (raised cosine) pulse, (c) Dirac pulse, (d) sinc pulse, (e) Gaussian pulse. A pulse in signal processing is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. [1]
The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-". [ 32 ] With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines . [ 33 ]
m s −2 [L][T] −2: Spatial position Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r
The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and θ 2 / 2 helps trim the red away.
It can be proven (with the help of a sum-to-product trigonometric identity) that the sum of two unit-amplitude sine waves can be expressed as a carrier wave of frequency f 1 + f 2 / 2 whose amplitude is modulated by an envelope wave of frequency f 1 - f 2 / 2 : [3]
The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.