Search results
Results from the WOW.Com Content Network
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
Any chemical that contains both acidic hydrogen and lone pairs of electrons to accept H + can undergo autoprotolysis. For example, water undergoes autoprotolysis in the self-ionization of water reaction. 2 H 2 O ⇌ OH − + H 3 O + For example, ammonia in its purest form may undergo autoprotolysis: 2 NH 3 ⇌ NH − 2 + NH + 4. Another example ...
The electronic energy of the molecule E is computed and the computation is repeated for different values of R. The nucleus-nucleus repulsive energy e 2 /(4 π ε 0 R) has to be added to the electronic energy, resulting in the total molecular energy E tot (R). The energy E is the eigenvalue of the Schrödinger equation for the single
In chemistry, molecular autoionization (or self-ionization) is a chemical reaction between molecules of the same substance to produce ions. If a pure liquid partially dissociates into ions, it is said to be self-ionizing. [1]: 163 In most cases the oxidation number on all atoms in such a reaction remains unchanged.
The energy required to detach an electron in its lowest energy state from an atom or molecule of a gas with less net electric charge is called the ionization potential, or ionization energy. The nth ionization energy of an atom is the energy required to detach its nth electron after the first n − 1 electrons have already been detached.
The process is known as electron capture ionization. Positively charged ions are produced by transferring an amount of energy to a bound electron in a collision with charged particles (e.g. ions, electrons or positrons) or with photons. The threshold amount of the required energy is known as ionization potential.
Ionization energy trends plotted against the atomic number, in units eV. The ionization energy gradually increases from the alkali metals to the noble gases. The maximum ionization energy also decreases from the first to the last row in a given column, due to the increasing distance of the valence electron shell from the nucleus.
K a is variously named a dissociation constant, [3] an acid ionization constant, [2]: 668 an acidity constant [1] or an ionization constant. [2]: 708 It serves as an indicator of the acid strength: stronger acids have a higher K a value (and a lower pK a value).