Search results
Results from the WOW.Com Content Network
In the case of a linear system, the system may be said to be underspecified, in which case the presence of more than one solution would imply an infinite number of solutions (since the system would be describable in terms of at least one free variable [2]), but that property does not extend to nonlinear systems (e.g., the system with the ...
In general, an underdetermined system of linear equations has an infinite number of solutions, if any. However, in optimization problems that are subject to linear equality constraints, only one of the solutions is relevant, namely the one giving the highest or lowest value of an objective function .
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
If the system has a singular matrix then there is a solution set with an infinite number of solutions. This solution set has the following additional properties: If u and v are two vectors representing solutions to a homogeneous system, then the vector sum u + v is also a solution to the system.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The homogeneous case (in which all constant terms are zero) is always consistent (because there is a trivial, all-zero solution). There are two cases, depending on the number of linearly dependent equations: either there is just the trivial solution, or there is the trivial solution plus an infinite set of other solutions.
Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are infinitely many solutions. In contrast, consider the system x + y + 2z = 3, x + y + z = 1, 2x + 2y + 2z = 5. The coefficient matrix is
For example, in linear algebra if the number of constraints (independent equations) in a system of linear equations equals the number of unknowns then precisely one solution exists; if there are fewer independent equations than unknowns, an infinite number of solutions exist; and if the number of independent equations exceeds the number of ...