Search results
Results from the WOW.Com Content Network
The resistance of a given conductor depends on the material it is made of, and on its dimensions. For a given material, the resistance is inversely proportional to the cross-sectional area. [1] For example, a thick copper wire has lower resistance than an otherwise-identical thin copper wire. Also, for a given material, the resistance is ...
The table below shows some of the parameters of common superconductors.X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla.
The conductivity of a water/aqueous solution is highly dependent on its concentration of dissolved salts, and other chemical species that ionize in the solution. Electrical conductivity of water samples is used as an indicator of how salt-free, ion-free, or impurity-free the sample is; the purer the water, the lower the conductivity (the higher ...
There are two main methods used to synthesize conductive polymers, chemical synthesis and electro (co)polymerization. The chemical synthesis means connecting carbon-carbon bond of monomers by placing the simple monomers under various condition, such as heating, pressing, light exposure and catalyst. The advantage is high yield.
These ions are good conductors of electric current in the solution. Originally, a "strong electrolyte" was defined as a chemical compound that, when in aqueous solution, is a good conductor of electricity. With a greater understanding of the properties of ions in solution, its definition was replaced by the present one.
Superionic conductors where σ i is more than 0.1 Ω −1 cm −1 (300 K) and the activation energy for ion transport E i is small (about 0.1 eV), are called advanced superionic conductors. The most famous example of advanced superionic conductor-solid electrolyte is RbAg 4 I 5 where σ i > 0.25 Ω −1 cm −1 and σ e ~10 −9 Ω −1 cm −1 ...
" Onnes stated in that paper that the "specific resistance" became thousands of times less in amount relative to the best conductor at ordinary temperature. Onnes later reversed the process and found that at 4.2 K, the resistance returned to the material. The next year, Onnes published more articles about the phenomenon.
Chemical formulae of superconducting materials generally contain fractional numbers to describe the doping required for superconductivity. There are several families of cuprate superconductors and they can be categorized by the elements they contain and the number of adjacent copper-oxide layers in each superconducting block.