Search results
Results from the WOW.Com Content Network
It can be obtained from cyclohexanone by α-bromination followed by treatment with base. Hydrolysis of 3-chloro cyclohexene followed by oxidation of the cyclohexenol is yet another route. Cyclohexenone is produced industrially by catalytic oxidation of cyclohexene, for example with hydrogen peroxide and vanadium catalysts.
It is related to tetrahydrofuran (THF) by replacement of the methylene group (CH 2) at the 2-position with an oxygen atom. The corresponding saturated 6-membered C 4 O 2 rings are called dioxanes. The isomeric 1,2-dioxolane (wherein the two oxygen centers are adjacent) is a peroxide. 1,3-dioxolane is used as a solvent and as a comonomer in ...
Methylcyclohexanones are a group of three isomers: 2-methylcyclohexanone, 3-methylcyclohexanone, and 4-methylcyclohexanone. [1] They can be viewed as derivative of cyclohexanone. They can be prepared by oxidation of methylcyclohexane as well as partial hydrogenation of the corresponding cresols. All are colorless liquids. The 2- and 3-isomers ...
For example, the conjugate addition of methylamine to cyclohexen-2-one gives the compound 3-(N-methylamino)-cyclohexanone. Conjugated carbonyls react with hydrogen cyanide to 1,4-keto-nitriles. See hydrocyanation of unsaturated carbonyls. In the Nagata reaction the cyanide source is diethylaluminum cyanide.
2 C 6 H 12 + O 2 → 2 C 6 H 11 OH. This process coforms cyclohexanone, and this mixture ("KA oil" for ketone-alcohol oil) is the main feedstock for the production of adipic acid, used to make nylon. The small cycloalkanes – in particular, cyclopropane – have a lower stability due to Baeyer strain and ring strain.
Cyclohexanone is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [11]. C 6 H 12 + O 2 → (CH 2) 5 CO + H 2 O. This process forms cyclohexanol as a by-product, and this mixture, called "KA Oil" for ketone-alcohol oil, is the main feedstock for the production of adipic acid.
It can be produced by a Wittig reaction or a reaction with a Tebbe's reagent from cyclohexanone. [ 1 ] [ 2 ] [ 3 ] It can also be synthesized as a side product of the dehydration of 2-methylcyclohexanol into 1-methylcyclohexene.
The archetypal Beckmann rearrangement [4] is the conversion of cyclohexanone to caprolactam via the oxime. Caprolactam is the feedstock in the production of Nylon 6. [5] The Beckmann solution consists of acetic acid, hydrochloric acid and acetic anhydride, and was widely used to catalyze the rearrangement.