Search results
Results from the WOW.Com Content Network
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.
In universal algebra, a subalgebra of an algebra A is a subset S of A that also has the structure of an algebra of the same type when the algebraic operations are restricted to S. If the axioms of a kind of algebraic structure is described by equational laws , as is typically the case in universal algebra, then the only thing that needs to be ...
A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ). In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
Given a subset V of P n, let I(V) be the ideal generated by all homogeneous polynomials vanishing on V. For any projective algebraic set V, the coordinate ring of V is the quotient of the polynomial ring by this ideal. [1]: 10 A quasi-projective variety is a Zariski open subset of a projective variety.
In set theory, a universal set is a set which contains all objects, including itself. [1] ... it would necessarily be a subset of the set of all sets, provided that ...
In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine ...
The first isomorphism theorem in general universal algebra states that this quotient algebra is naturally isomorphic to the image of f (which is a subalgebra of B). Note that the definition of kernel here (as in the monoid example) doesn't depend on the algebraic structure; it is a purely set -theoretic concept.