Search results
Results from the WOW.Com Content Network
Animated example of a breadth-first search. Black: explored, grey: queued to be explored later on BFS on Maze-solving algorithm Top part of Tic-tac-toe game tree. Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property.
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
Parallel all-pairs shortest path algorithm; Parallel breadth-first search; Parallel single-source shortest path algorithm; Path-based strong component algorithm; Pre-topological order; Prim's algorithm; Proof-number search; Push–relabel maximum flow algorithm
The algorithm is called lexicographic breadth-first search because the order it produces is an ordering that could also have been produced by a breadth-first search, and because if the ordering is used to index the rows and columns of an adjacency matrix of a graph then the algorithm sorts the rows and columns into lexicographical order.
In computer science, iterative deepening search or more specifically iterative deepening depth-first search [1] (IDS or IDDFS) is a state space/graph search strategy in which a depth-limited version of depth-first search is run repeatedly with increasing depth limits until the goal is found.
Examples include biological or social networks, which contain hundreds, thousands and even billions of nodes in some cases (e.g. Facebook or LinkedIn). 1-planarity [1] 3-dimensional matching [2] [3]: SP1 Bandwidth problem [3]: GT40 Bipartite dimension [3]: GT18 Capacitated minimum spanning tree [3]: ND5
Beam search uses breadth-first search to build its search tree. At each level of the tree, it generates all successors of the states at the current level, sorting them in increasing order of heuristic cost. [2] However, it only stores a predetermined number, , of best states at each level (called the beam width). Only those states are expanded ...