Search results
Results from the WOW.Com Content Network
Elastic constants are specific parameters that quantify the stiffness of a material in response to applied stresses and are fundamental in defining the elastic properties of materials. These constants form the elements of the stiffness matrix in tensor notation, which relates stress to strain through linear equations in anisotropic materials.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
It is the modulus of elasticity for tension or axial compression. Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material.
[1]: 58 For example, low-carbon steel generally exhibits a very linear stress–strain relationship up to a well-defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus. Plastic flow initiates at the upper yield point and continues at the lower ...
Conversion formulae Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
Elastomers and shape memory metals such as Nitinol exhibit large elastic deformation ranges, as does rubber. However, elasticity is nonlinear in these materials. Normal metals, ceramics and most crystals show linear elasticity and a smaller elastic range. Linear elastic deformation is governed by Hooke's law, which states:
The constant is called the modulus of elasticity (or just modulus) while its reciprocal is called the modulus of compliance (or just compliance). There are three postulates that define the ideal elastic behaviour: (1) the strain response to each level of applied stress (or vice versa) has a unique equilibrium value;
Most metals have an -value between 0.10 and 0.50. In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [ 1 ] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.