Search results
Results from the WOW.Com Content Network
Thin plate splines (TPS) are a spline-based technique for data interpolation and smoothing. "A spline is a function defined by polynomials in a piecewise manner." [1] [2] They were introduced to geometric design by Duchon. [3]
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
Equivalently, affine shape adaptation can be accomplished by iteratively warping a local image patch with affine transformations while applying a rotationally symmetric filter to the warped image patches. Provided that this iterative process converges, the resulting fixed point will be affine invariant.
A wheel graph with n vertices can also be defined as the 1-skeleton of an (n – 1)-gonal pyramid. Some authors [1] write W n to denote a wheel graph with n vertices (n ≥ 4); other authors [2] instead use W n to denote a wheel graph with n + 1 vertices (n ≥ 3), which is formed by connecting a single vertex to all vertices of a cycle of ...
Effect of applying various 2D affine transformation matrices on a unit square. Note that the reflection matrices are special cases of the scaling matrix. Affine transformations on the 2D plane can be performed in three dimensions. Translation is done by shearing parallel to the xy plane, and rotation is performed around the z axis.
To define the special affine curvature, it is necessary first to define the special affine arclength (also called the equiaffine arclength). Consider an affine plane curve β ( t ) . Choose coordinates for the affine plane such that the area of the parallelogram spanned by two vectors a = ( a 1 , a 2 ) and b = ( b 1 , b 2 ) is given by the ...
A manifold having a distinguished affine structure is called an affine manifold and the charts which are affinely related to those of the affine structure are called affine charts. In each affine coordinate domain the coordinate vector fields form a parallelisation of that domain, so there is an associated connection on each domain.
More generally, a map f : X→Y between two varieties is regular at a point x if there is a neighbourhood U of x and a neighbourhood V of f(x) such that f(U) ⊂ V and the restricted function f : U→V is regular as a function on some affine charts of U and V. Then f is called regular, if it is regular at all points of X.