enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative group - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group

    The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    The multiplicative group of integers modulo n, which is the group of units in this ring, may be written as (depending on the author) (/) ...

  4. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.

  5. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...

  6. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [4] [5] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring /). [6]

  7. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The multiplicative group of the field is the group whose underlying set is the set of nonzero real numbers {} and whose operation is multiplication. More generally, one speaks of an additive group whenever the group operation is notated as addition; in this case, the identity is typically denoted ⁠ 0 {\displaystyle 0} ⁠ , and the inverse of ...

  8. Algebraic group - Wikipedia

    en.wikipedia.org/wiki/Algebraic_group

    The additive group: the affine line endowed with addition and opposite as group operations is an algebraic group. It is called the additive group (because its k {\displaystyle k} -points are isomorphic as a group to the additive group of k {\displaystyle k} ), and usually denoted by G a {\displaystyle \mathrm {G} _{a}} .

  9. Character (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Character_(mathematics)

    A multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field , usually the field of complex numbers. If G is any group, then the set Ch(G) of these morphisms forms an abelian group under pointwise multiplication.