Ad
related to: modular linear group of two variables worksheet pdfteacherspayteachers.com has been visited by 100K+ users in the past month
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Free Resources
Search results
Results from the WOW.Com Content Network
In mathematics, the modular group is the projective special linear group (,) of matrices with integer coefficients and determinant, such that the matrices and are identified. The modular group acts on the upper-half of the complex plane by linear fractional transformations .
Within finite group theory, character-theoretic results proved by Richard Brauer using modular representation theory played an important role in early progress towards the classification of finite simple groups, especially for simple groups whose characterization was not amenable to purely group-theoretic methods because their Sylow 2-subgroups ...
The braid group B 3 is the universal central extension of the modular group. Under this covering, the preimage of the modular group PSL(2, Z) is the braid group on 3 generators, B 3, which is the universal central extension of the modular group. These are lattices inside the relevant algebraic groups, and this corresponds algebraically to the ...
A modular function is a function that is invariant with respect to the modular group, but without the condition that it be holomorphic in the upper half-plane (among other requirements). Instead, modular functions are meromorphic : they are holomorphic on the complement of a set of isolated points, which are poles of the function.
In 1973, Pierre Deligne and Michael Rapoport showed that the ring of modular forms M(Γ) is finitely generated when Γ is a congruence subgroup of SL(2, Z). [2]In 2003, Lev Borisov and Paul Gunnells showed that the ring of modular forms M(Γ) is generated in weight at most 3 when is the congruence subgroup () of prime level N in SL(2, Z) using the theory of toric modular forms. [3]
The matrices [e 1, ..., e n] are divisible by all non-zero linear forms in the variables X i with coefficients in the finite field F q. In particular the Moore determinant [0, 1, ..., n − 1] is a product of such linear forms, taken over 1 + q + q 2 + ... + q n – 1 representatives of ( n – 1)-dimensional projective space over the field.
That implies that any two rational functions F and G, in the function field of the modular curve, will satisfy a modular equation P(F,G) = 0 with P a non-zero polynomial of two variables over the complex numbers. For suitable non-degenerate choice of F and G, the equation P(X,Y) = 0 will actually define the modular curve.
In mathematics, a Hilbert modular form is a generalization of modular forms to functions of two or more variables. It is a (complex) analytic function on the m -fold product of upper half-planes H {\displaystyle {\mathcal {H}}} satisfying a certain kind of functional equation .
Ad
related to: modular linear group of two variables worksheet pdfteacherspayteachers.com has been visited by 100K+ users in the past month