Search results
Results from the WOW.Com Content Network
A sufficient condition for a local minimum is that all of these minors have the sign of (). (In the unconstrained case of = these conditions coincide with the conditions for the unbordered Hessian to be negative definite or positive definite respectively).
For the general case of an arbitrary number n of variables, there are n sign conditions on the n principal minors of the Hessian matrix that together are equivalent to positive or negative definiteness of the Hessian (Sylvester's criterion): for a local minimum, all the principal minors need to be positive, while for a local maximum, the minors ...
Geometry optimization is then a mathematical optimization problem, in which it is desired to find the value of r for which E(r) is at a local minimum, that is, the derivative of the energy with respect to the position of the atoms, ∂E/∂r, is the zero vector and the second derivative matrix of the system, (), also known as the Hessian matrix ...
Sufficient conditions for a constrained local maximum or minimum can be stated in terms of a sequence of principal minors (determinants of upper-left-justified sub-matrices) of the bordered Hessian matrix of second derivatives of the Lagrangian expression. [6] [16]
In other words, the matrix of the second-order partial derivatives, known as the Hessian matrix, is a symmetric matrix. Sufficient conditions for the symmetry to hold are given by Schwarz's theorem, also called Clairaut's theorem or Young's theorem. [1] [2]
There also exist various quasi-Newton methods, where an approximation for the Hessian (or its inverse directly) is built up from changes in the gradient. If the Hessian is close to a non-invertible matrix, the inverted Hessian can be numerically unstable and the solution may diverge. In this case, certain workarounds have been tried in the past ...
For a function of more than one variable, the second-derivative test generalizes to a test based on the eigenvalues of the function's Hessian matrix at the critical point. In particular, assuming that all second-order partial derivatives of f are continuous on a neighbourhood of a critical point x , then if the eigenvalues of the Hessian at x ...
The main difference is that the Hessian matrix is a symmetric matrix, unlike the Jacobian when searching for zeroes. Most quasi-Newton methods used in optimization exploit this symmetry. In optimization, quasi-Newton methods (a special case of variable-metric methods) are algorithms for finding local maxima and minima of functions.