Search results
Results from the WOW.Com Content Network
In economics, the price elasticity of demand refers to the elasticity of a demand function Q(P), and can be expressed as (dQ/dP)/(Q(P)/P) or the ratio of the value of the marginal function (dQ/dP) to the value of the average function (Q(P)/P). This relationship provides an easy way of determining whether a demand curve is elastic or inelastic ...
In continuum mechanics, the Michell solution is a general solution to the elasticity equations in polar coordinates (,) developed by John Henry Michell in 1899. [1] The solution is such that the stress components are in the form of a Fourier series in θ {\displaystyle \theta } .
The compatibility conditions in linear elasticity are obtained by observing that there are six strain-displacement relations that are functions of only three unknown displacements. This suggests that the three displacements may be removed from the system of equations without loss of information.
Its components are known as Beltrami stress functions. is the Levi-Civita pseudotensor, with all values equal to zero except those in which the indices are not repeated. For a set of non-repeating indices the component value will be +1 for even permutations of the indices, and -1 for odd permutations.
Other forms include the constant elasticity of substitution production function (CES), which is a generalized form of the Cobb–Douglas function, and the quadratic production function. The best form of the equation to use and the values of the parameters ( a 0 , … , a n {\displaystyle a_{0},\dots ,a_{n}} ) vary from company to company and ...
A good with an elasticity of −2 has elastic demand because quantity demanded falls twice as much as the price increase; an elasticity of −0.5 has inelastic demand because the change in quantity demanded change is half of the price increase. [2] At an elasticity of 0 consumption would not change at all, in spite of any price increases.
Elasticity of scale or output elasticity measures the percentage change in output induced by a collective percent change in the usages of all inputs. [20] A production function or process is said to exhibit constant returns to scale if a percentage change in inputs results in an equal percentage in outputs (an elasticity equal to 1).
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.