Search results
Results from the WOW.Com Content Network
Magnetostriction is a property of magnetic materials that causes them to change their shape or dimensions during the process of magnetization.The variation of materials' magnetization due to the applied magnetic field changes the magnetostrictive strain until reaching its saturation value, λ.
Permanent magnetism is caused by the alignment of magnetic moments, and induced magnetism is created when disordered magnetic moments are forced to align in an applied magnetic field. For example, the ordered magnetic moments ( ferromagnetic , Figure 1) change and become disordered ( paramagnetic , Figure 2) at the Curie temperature.
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
For permanent magnets this is usually only a small change, but if you have an electromagnet that consists of a wire wound round an iron core, and you bring a permanent magnet near to that core, then the magnetization of that core can change drastically (for example, if there is no current in the wire, the electromagnet would not be magnetic ...
Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial ...
This is a specific example of a general rule that magnets are attracted (or repulsed depending on the orientation of the magnet) into regions of higher magnetic field. Any non-uniform magnetic field, whether caused by permanent magnets or electric currents, exerts a force on a small magnet in this way.
The change in magnetic field causes the magnetic dipole molecules to change shape slightly, making the crystal lattice longer in one dimension and shorter in other dimensions. However, since the magnetic domain is "squished in" with its boundaries held rigid by the surrounding material, it cannot actually change shape.
This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets. A permanent magnet is an object made from a material that is magnetized and