Search results
Results from the WOW.Com Content Network
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}
Adding a non-linear output mixing function (as in the xoshiro256** and permuted congruential generator constructions) can greatly improve the performance on statistical tests. Another structure for a PRNG is a very simple recurrence function combined with a powerful output mixing function.
The Skolem problem is named after Thoralf Skolem, because of his 1933 paper proving the Skolem–Mahler–Lech theorem on the zeros of a sequence satisfying a linear recurrence with constant coefficients. [2] This theorem states that, if such a sequence has zeros, then with finitely many exceptions the positions of the zeros repeat regularly.
In mathematics a P-recursive equation is a linear equation of sequences where the coefficient sequences can be represented as polynomials.P-recursive equations are linear recurrence equations (or linear recurrence relations or linear difference equations) with polynomial coefficients.
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if
Berlekamp–Massey algorithm. The Berlekamp–Massey algorithm is an algorithm that will find the shortest linear-feedback shift register (LFSR) for a given binary output sequence.
is constant-recursive because it satisfies the linear recurrence = +: each number in the sequence is the sum of the previous two. [2] Other examples include the power of two sequence 1 , 2 , 4 , 8 , 16 , … {\displaystyle 1,2,4,8,16,\ldots } , where each number is the sum of twice the previous number, and the square number sequence 0 , 1 , 4 ...