Search results
Results from the WOW.Com Content Network
The rate of surface rotation is observed to be the fastest at the equator (latitude φ = 0°) and to decrease as latitude increases. The solar rotation period is 25.67 days at the equator and 33.40 days at 75 degrees of latitude. [2] The Carrington rotation [clarification needed] at the time this article was loaded, 02 March 2025 16:30:52 , was ...
The Carrington heliographic coordinate system, established by Richard C. Carrington in 1863, rotates with the Sun at a fixed rate based on the observed rotation of low-latitude sunspots. It rotates with a sidereal period of exactly 25.38 days, which corresponds to a mean synodic period of 27.2753 days.
This is the coordinate system normally used to calculate the position of the Sun in terms of solar zenith angle and solar azimuth angle, and the two parameters can be used to depict the Sun path. [3] This calculation is useful in astronomy, navigation, surveying, meteorology, climatology, solar energy, and sundial design.
It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane. [4] [5] At solar noon, the zenith angle is at a minimum and is equal to latitude minus solar declination angle. This is the basis by which ancient mariners navigated the oceans. [6]
Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...
Ecliptic latitude for "fixed stars" is not affected by precession. Distance Distance is also necessary for a complete spherical position (symbols: heliocentric r, geocentric Δ). Different distance units are used for different objects. Within the Solar System, astronomical units are used, and for objects near the Earth, Earth radii or ...
Solar longitude, commonly abbreviated as Ls, is the ecliptic longitude of the Sun, i.e. the position of the Sun on the celestial sphere along the ecliptic. It is also an effective measure of the position of the Earth (or any other Sun-orbiting body) in its orbit around the Sun, [ 1 ] usually taken as zero at the moment of the vernal equinox . [ 2 ]
[22] [26] There is a graduated ring on the lower plate which displays the relative rotation between the north-aligned top plate and the surveying sight-line on the bottom plate, and has verniers to allow precise reading of the angle. [22] [26] The latitude arc is attached perpendicular to the upper plate.