Search results
Results from the WOW.Com Content Network
According to Eutocius, Archytas was the first to solve the problem of doubling the cube (the so-called Delian problem) with an ingenious geometric construction. [2] [3] [4] The nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837.
Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric problems. Here different solutions are identified if they are isomorphic (that is, geometrically the same). Moduli spaces can be thought of as giving a universal space of parameters for the problem.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.
AlphaGeometry is an artificial intelligence (AI) program that can solve hard problems in Euclidean geometry.It was developed by DeepMind, a subsidiary of Google.The program solved 25 geometry problems out of 30 from the International Mathematical Olympiad (IMO) under competition time limits—a performance almost as good as the average human gold medallist.
Bellman's lost-in-a-forest problem is an unsolved minimization problem in geometry, originating in 1955 by the American applied mathematician Richard E. Bellman. [1] The problem is often stated as follows: "A hiker is lost in a forest whose shape and dimensions are precisely known to him.
Moser's worm problem (also known as mother worm's blanket problem) is an unsolved problem in geometry formulated by the Austrian-Canadian mathematician Leo Moser in 1966. The problem asks for the region of smallest area that can accommodate every plane curve of length 1.
The solutions in both cases are non-trivial but yield to straightforward application of trigonometry, analytical geometry or integral calculus. Both problems are intrinsically transcendental – they do not have closed-form analytical solutions in the Euclidean plane. The numerical answers must be obtained by an iterative approximation procedure.