Search results
Results from the WOW.Com Content Network
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
A ray through the unit hyperbola = in the point (,), where is twice the area between the ray, the hyperbola, and the -axis. The earliest and most widely adopted symbols use the prefix arc-(that is: arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth), by analogy with the inverse circular functions (arcsin, etc.).
Like in the Cartesian coordinate system, the coordinates are found by dropping perpendiculars from the point onto the x and y-axes. x a is the distance from the foot of the perpendicular on the x-axis to the origin (regarded as positive on one side and negative on the other); y a is the distance from the foot of the perpendicular on the y-axis ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
The prolate spheroidal coordinates are produced by rotating the elliptic coordinates about the -axis, i.e., the axis connecting the foci, whereas the oblate spheroidal coordinates are produced by rotating the elliptic coordinates about the -axis, i.e., the axis separating the foci.
The axes of symmetry or principal axes are the transverse axis (containing the segment of length 2a with endpoints at the vertices) and the conjugate axis (containing the segment of length 2b perpendicular to the transverse axis and with midpoint at the hyperbola's center). [6]
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...