enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The ...

  3. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    The following test can be applied at any critical point a for which the Hessian matrix is invertible: If the Hessian is positive definite (equivalently, has all eigenvalues positive) at a, then f attains a local minimum at a. If the Hessian is negative definite (equivalently, has all eigenvalues negative) at a, then f attains a local maximum at a.

  4. Hessian equation - Wikipedia

    en.wikipedia.org/wiki/Hessian_equation

    In mathematics, k-Hessian equations (or Hessian equations for short) are partial differential equations (PDEs) based on the Hessian matrix. More specifically, a Hessian equation is the k-trace, or the kth elementary symmetric polynomial of eigenvalues of the Hessian matrix. When k ≥ 2, the k-Hessian equation is a fully nonlinear partial ...

  5. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  6. Hessian automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Hessian_automatic...

    To calculate the quadratic approximation, one must first calculate its gradient and Hessian matrix. Let f : R n → R {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } , for each x ∈ R n {\displaystyle x\in \mathbb {R} ^{n}} the Hessian matrix H ( x ) ∈ R n × n {\displaystyle H(x)\in \mathbb {R} ^{n\times n}} is the second order ...

  7. Condition number - Wikipedia

    en.wikipedia.org/wiki/Condition_number

    Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.

  8. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    Newton's method requires the Jacobian matrix of all partial derivatives of a multivariate function when used to search for zeros or the Hessian matrix when used for finding extrema. Quasi-Newton methods, on the other hand, can be used when the Jacobian matrices or Hessian matrices are unavailable or are impractical to compute at every iteration.

  9. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Finding the inverse of the Hessian in high dimensions to compute the Newton direction = (″ ()) ′ can be an expensive operation. In such cases, instead of directly inverting the Hessian, it is better to calculate the vector h {\displaystyle h} as the solution to the system of linear equations