Search results
Results from the WOW.Com Content Network
The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N = A − Z. [2] The mass number is written either after the element name or as a superscript to the left of an element's symbol.
where mass number A equals to the sum of atomic number Z and number of neutrons N, and m p, m n, a V, a S, a C, a A are constants, one can see that the mass depends on Z and N non-linearly, even for a constant mass number. For odd A, it is admitted that δ = 0 and the mass dependence on Z is convex (or on N or N − Z, it does not matter for a ...
Binding energy per nucleon of common isotopes. A graph of the ratio of mass number to atomic mass would be similar. The amount that the ratio of atomic masses to mass number deviates from 1 is as follows: the deviation starts positive at hydrogen-1, then decreases until it reaches a local minimum at helium-4. Isotopes of lithium, beryllium, and ...
where A = Atomic mass number (the number of protons Z, plus the number of neutrons N) and r 0 = 1.25 fm = 1.25 × 10 −15 m. In this equation, the "constant" r 0 varies by 0.2 fm, depending on the nucleus in question, but this is less than 20% change from a constant. [20]
The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z. Neutron number is not written explicitly in nuclide symbol notation, but can be inferred as it is the difference between the two left-hand numbers (atomic number and mass).
Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ
A set of nuclides with equal proton number (atomic number), i.e., of the same chemical element but different neutron numbers, are called isotopes of the element. Particular nuclides are still often loosely called "isotopes", but the term "nuclide" is the correct one in general (i.e., when Z is not fixed).
the total rest mass on the two helium-nuclei = 2 × 4.0026 = 8.0052 u; missing rest mass = 8.029 – 8.0052 = 0.0238 atomic mass units. In a nuclear reaction, the total (relativistic) energy is conserved. The "missing" rest mass must therefore reappear as kinetic energy released in the reaction; its source is the nuclear binding energy.