Search results
Results from the WOW.Com Content Network
Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Many root-finding processes work by interpolation. This consists in using the last computed approximate values of the root for approximating the function by a polynomial of low degree, which takes the same values at these approximate roots. Then the root of the polynomial is computed and used as a new approximate value of the root of the ...
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
To reduce this error, one may, for each root that is found, restart Newton's method with the original polynomial, and this approximate root as starting value. However, there is no warranty that this will allow finding all roots. In fact, the problem of finding the roots of a polynomial from its coefficients can be highly ill-conditioned.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)
Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.