Search results
Results from the WOW.Com Content Network
C 2 H 3 Na O 2: Molar mass: 82.034 g·mol −1 : Appearance White deliquescent powder or crystals Odor: Vinegar (acetic acid) odor when heated to decomposition [1]: Density: 1.528 g/cm 3 (20 °C, anhydrous)
The crystal structure of sodium ethoxide has been determined by X-ray crystallography.It consists of layers of alternating Na + and O − centres with disordered ethyl groups covering the top and bottom of each layer.
An overview of the different components included in the field of chemical biology. Chemical biology is a scientific discipline between the fields of chemistry and biology.The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and manipulation of biological systems. [1]
Bioanalysis is a sub-discipline of analytical chemistry covering the quantitative measurement of xenobiotics (drugs and their metabolites, and biological molecules in unnatural locations or concentrations) and biotics (macromolecules, proteins, DNA, large molecule drugs, metabolites) in biological systems.
The sodium–potassium pump, a critical enzyme for regulating sodium and potassium levels in cells. Sodium ions (Na +) are necessary in small amounts for some types of plants, [1] but sodium as a nutrient is more generally needed in larger amounts [1] by animals, due to their use of it for generation of nerve impulses and for maintenance of electrolyte balance and fluid balance.
Sodium methoxide is a routinely used base in organic chemistry, applicable to the synthesis of numerous compounds ranging from pharmaceuticals to agrichemicals. [4] As a base, it is employed in dehydrohalogenations and various condensations. [5] It is also a nucleophile for the production of methyl ethers. [6]
The metabolome reflects the interaction between an organism's genome and its environment. As a result, an organism's metabolome can serve as an excellent probe of its phenotype (i.e. the product of its genotype and its environment).
Cheminformatics (also known as chemoinformatics) refers to the use of physical chemistry theory with computer and information science techniques—so called "in silico" techniques—in application to a range of descriptive and prescriptive problems in the field of chemistry, including in its applications to biology and related molecular fields.