enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Substrate inhibition in bioreactors - Wikipedia

    en.wikipedia.org/wiki/Substrate_inhibition_in...

    Substrate inhibition in bioreactors occurs when the concentration of substrate (such as glucose, salts, or phenols [1]) exceeds the optimal parameters and reduces the growth rate of the cells within the bioreactor. This is often confused with substrate limitation, which describes environments in which cell growth is limited due to of low substrate.

  3. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The analysis of these reactions is much simpler if the concentration of substrate A is kept constant and substrate B varied. Under these conditions, the enzyme behaves just like a single-substrate enzyme and a plot of v by [S] gives apparent K M and V max constants for substrate B. If a set of these measurements is performed at different fixed ...

  4. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    Enzymes however display a saturation effect where,, as the substrate concentration is increased the reaction rate reaches a maximum value. Standard approaches to describing this behavior are based on models developed by Michaelis and Menten as well and Briggs and Haldane .

  5. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    in which e is the concentration of free enzyme (not the total concentration) and x is the concentration of enzyme-substrate complex EA. Conservation of enzyme requires that [28] = where is now the total enzyme concentration. After combining the two expressions some straightforward algebra leads to the following expression for the concentration ...

  6. Enzyme inhibitor - Wikipedia

    en.wikipedia.org/wiki/Enzyme_inhibitor

    They are classified according to the effect of the inhibitor on the V max (maximum reaction rate catalysed by the enzyme) and K m (the concentration of substrate resulting in half maximal enzyme activity) as the concentration of the enzyme's substrate is varied. [15] [16]

  7. Non-competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Non-competitive_inhibition

    Non-competitive inhibition is a type of enzyme inhibition where the inhibitor reduces the activity of the enzyme and binds equally well to the enzyme whether or not it has already bound the substrate. [1] This is unlike competitive inhibition, where binding affinity for the substrate in the enzyme is decreased in the presence of an inhibitor.

  8. Uncompetitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Uncompetitive_inhibition

    It can be recognized by two observations: first, it cannot be reversed by increasing the substrate concentration , and second, linear plots show effects on and , seen, for example, in the Lineweaver–Burk plot as parallel rather than intersecting lines. It is sometimes explained by supposing that the inhibitor can bind to the enzyme-substrate ...

  9. Competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Competitive_inhibition

    The Michaelis–Menten Model can be an invaluable tool to understanding enzyme kinetics. According to this model, a plot of the reaction velocity (V 0) associated with the concentration [S] of the substrate can then be used to determine values such as V max, initial velocity, and K m (V max /2 or affinity of enzyme to substrate complex). [4]