enow.com Web Search

  1. Ad

    related to: stochastic differential equations an introduction with applications pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    The calculus has been applied to stochastic partial differential equations as well. The calculus allows integration by parts with random variables; this operation is used in mathematical finance to compute the sensitivities of financial derivatives. The calculus has applications in, for example, stochastic filtering.

  3. Stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_differential...

    A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, [1] resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices , [ 2 ] random ...

  4. Filtering problem (stochastic processes) - Wikipedia

    en.wikipedia.org/wiki/Filtering_problem...

    Consider a probability space (Ω, Σ, P) and suppose that the (random) state Y t in n-dimensional Euclidean space R n of a system of interest at time t is a random variable Y t : Ω → R n given by the solution to an Itō stochastic differential equation of the form

  5. Backward stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Backward_stochastic...

    A backward stochastic differential equation (BSDE) is a stochastic differential equation with a terminal condition in which the solution is required to be adapted with respect to an underlying filtration. BSDEs naturally arise in various applications such as stochastic control, mathematical finance, and nonlinear Feynman-Kac formula. [1]

  6. Stochastic processes and boundary value problems - Wikipedia

    en.wikipedia.org/wiki/Stochastic_processes_and...

    Let be a domain (an open and connected set) in .Let be the Laplace operator, let be a bounded function on the boundary, and consider the problem: {() =, = (),It can be shown that if a solution exists, then () is the expected value of () at the (random) first exit point from for a canonical Brownian motion starting at .

  7. Stochastic calculus - Wikipedia

    en.wikipedia.org/wiki/Stochastic_calculus

    An important application of stochastic calculus is in mathematical finance, in which asset prices are often assumed to follow stochastic differential equations.For example, the Black–Scholes model prices options as if they follow a geometric Brownian motion, illustrating the opportunities and risks from applying stochastic calculus.

  8. Stochastic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_partial...

    Stochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations. They have relevance to quantum field theory, statistical mechanics, and spatial modeling. [1] [2]

  9. Geometric Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Geometric_Brownian_motion

    A stochastic process S t is said to follow a GBM if it satisfies the following stochastic differential equation (SDE): = + where is a Wiener process or Brownian motion, and ('the percentage drift') and ('the percentage volatility') are constants.

  1. Ad

    related to: stochastic differential equations an introduction with applications pdf