Search results
Results from the WOW.Com Content Network
The mass/luminosity relationship can also be used to determine the lifetime of stars by noting that lifetime is approximately proportional to M/L although one finds that more massive stars have shorter lifetimes than that which the M/L relationship predicts. A more sophisticated calculation factors in a star's loss of mass over time.
The mass, radius, and luminosity of a star are closely interlinked, and their respective values can be approximated by three relations. First is the Stefan–Boltzmann law, which relates the luminosity L, the radius R and the surface temperature T eff. Second is the mass–luminosity relation, which relates the luminosity L and the mass M.
Following Resolution B2, the relation between a star's absolute bolometric magnitude and its luminosity is no longer directly tied to the Sun's (variable) luminosity: = + where L ★ is the star's luminosity (bolometric luminosity) in watts
Luminosity is an absolute measure of radiated electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. [1] [2] In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects. [3] [4]
The internal structure of a main sequence star depends upon the mass of the star. In stars with masses of 0.3–1.5 solar masses (M ☉), including the Sun, hydrogen-to-helium fusion occurs primarily via proton–proton chains, which do not establish a steep temperature gradient. Thus, radiation dominates in the inner portion of solar mass stars.
Calibrator stars close in the sky to the target are favoured (to avoid large differences in the atmospheric paths). If those stars have somewhat different zenith angles then a correction factor as a function of airmass can be derived and applied to the airmass at the target's position. Such calibration obtains the brightness as would be ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, in the vicinity of a typical star the ratio of radiation-to-gravity force on a hydrogen atom or ion, = =,, hence radiation force is negligible in general, except perhaps around a luminous O-type star of mass , or around a black hole accreting gas at the Eddington limit so that its luminosity-to-mass ratio / is defined by =.