enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    A removable discontinuity occurs when () = (+), also regardless of whether () is defined, and regardless of its value if it is defined (but which does not match that of the two limits). A type II discontinuity occurs when either f ( c − ) {\displaystyle f(c^{-})} or f ( c + ) {\displaystyle f(c^{+})} does not exist (possibly both).

  4. Removable singularity - Wikipedia

    en.wikipedia.org/wiki/Removable_singularity

    A graph of a parabola with a removable singularity at x = 2 In complex analysis , a removable singularity of a holomorphic function is a point at which the function is undefined , but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.

  5. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to ...

  6. L'Hôpital's rule - Wikipedia

    en.wikipedia.org/wiki/L'Hôpital's_rule

    A simple but very useful consequence of L'Hopital's rule is that the derivative of a function cannot have a removable discontinuity. That is, suppose that f is continuous at a , and that f ′ ( x ) {\displaystyle f'(x)} exists for all x in some open interval containing a , except perhaps for x = a {\displaystyle x=a} .

  7. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]

  8. Oscillation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Oscillation_(mathematics)

    For example, in the classification of discontinuities: in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides);

  9. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.