enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.

  3. Black–Scholes model - Wikipedia

    en.wikipedia.org/wiki/Black–Scholes_model

    [12] [13] [14] Robert C. Merton was the first to publish a paper expanding the mathematical understanding of the options pricing model, and coined the term "Black–Scholes options pricing model". The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other ...

  4. Black–Scholes equation - Wikipedia

    en.wikipedia.org/wiki/Black–Scholes_equation

    where (,) is the price of the option as a function of stock price S and time t, r is the risk-free interest rate, and is the volatility of the stock. The key financial insight behind the equation is that, under the model assumption of a frictionless market , one can perfectly hedge the option by buying and selling the underlying asset in just ...

  5. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In this situation, the chain rule represents the fact that the derivative of f ∘ g is the composite of the derivative of f and the derivative of g. This theorem is an immediate consequence of the higher dimensional chain rule given above, and it has exactly the same formula. The chain rule is also valid for Fréchet derivatives in Banach spaces.

  6. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The discrete difference equations may then be solved iteratively to calculate a price for the option. [4] The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a ...

  7. Monte Carlo methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    In mathematical finance, a Monte Carlo option model uses Monte Carlo methods [Notes 1] to calculate the value of an option with multiple sources of uncertainty or with complicated features. [1] The first application to option pricing was by Phelim Boyle in 1977 (for European options ).

  8. Lattice model (finance) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(finance)

    at option maturity, value is based on moneyness for all nodes in that time-step; at earlier nodes, value is a function of the expected value of the option at the nodes in the later time step, discounted at the short-rate of the current node; where non-European value is the greater of this and the exercise value given the corresponding bond value.

  9. Black model - Wikipedia

    en.wikipedia.org/wiki/Black_model

    The Black formula is similar to the Black–Scholes formula for valuing stock options except that the spot price of the underlying is replaced by a discounted futures price F. Suppose there is constant risk-free interest rate r and the futures price F(t) of a particular underlying is log-normal with constant volatility σ.