Search results
Results from the WOW.Com Content Network
Informally, in frequentist statistics, a confidence interval (CI) is an interval which is expected to typically contain the parameter being estimated. More specifically, given a confidence level γ {\displaystyle \gamma } (95% and 99% are typical values), a CI is a random interval which contains the parameter being estimated γ {\displaystyle ...
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.
Ci – cosine integral function. cis – cos + i sin function. (Also written as expi.) Cl – conjugacy class. cl – topological closure. CLT – central limit theorem. cod, codom – codomain. cok, coker – cokernel. colsp – column space of a matrix. conv – convex hull of a set. Cor – corollary. corr – correlation. cos – cosine ...
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".
For example, a pain-relief drug is tested on 1500 human subjects, and no adverse event is recorded. From the rule of three, it can be concluded with 95% confidence that fewer than 1 person in 500 (or 3/1500) will experience an adverse event. By symmetry, for only successes, the 95% confidence interval is [1−3/ n,1].
For the case of a single parameter and data that can be summarised in a single sufficient statistic, it can be shown that the credible interval and the confidence interval coincide if the unknown parameter is a location parameter (i.e. the forward probability function has the form (|) = ()), with a prior that is a uniform flat distribution; [6 ...
The confidence interval aims to contain the unknown mean remission duration with a given probability. In this example, the coverage probability would be the real probability that the interval actually contains the true mean remission duration.