enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.

  3. Complex manifold - Wikipedia

    en.wikipedia.org/wiki/Complex_manifold

    The Hopf manifolds are examples of complex manifolds that are not Kähler. To construct one, take a complex vector space minus the origin and consider the action of the group of integers on this space by multiplication by exp(n). The quotient is a complex manifold whose first Betti number is one, so by the Hodge theory, it cannot be Kähler.

  4. Riemann surface - Wikipedia

    en.wikipedia.org/wiki/Riemann_surface

    There are several equivalent definitions of a Riemann surface. A Riemann surface X is a connected complex manifold of complex dimension one. This means that X is a connected Hausdorff space that is endowed with an atlas of charts to the open unit disk of the complex plane: for every point x ∈ X there is a neighbourhood of x that is homeomorphic to the open unit disk of the complex plane, and ...

  5. Complex geometry - Wikipedia

    en.wikipedia.org/wiki/Complex_geometry

    In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers.In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves.

  6. Kähler–Einstein metric - Wikipedia

    en.wikipedia.org/wiki/Kähler–Einstein_metric

    The scalar curvature is the total trace of the Riemannian curvature tensor, a smooth function on the manifold (,), and in the Kähler case the condition that the scalar curvature is constant admits a transformation into an equation similar to the complex Monge–Ampere equation of the Kähler–Einstein setting.

  7. Hyperkähler manifold - Wikipedia

    en.wikipedia.org/wiki/HyperKähler_manifold

    Marcel Berger's 1955 paper [2] on the classification of Riemannian holonomy groups first raised the issue of the existence of non-symmetric manifolds with holonomy Sp(n)·Sp(1).Interesting results were proved in the mid-1960s in pioneering work by Edmond Bonan [3] and Kraines [4] who have independently proven that any such manifold admits a parallel 4-form .The long awaited analog of strong ...

  8. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    A conformal manifold is a Riemannian manifold (or pseudo-Riemannian manifold) equipped with an equivalence class of metric tensors, in which two metrics g and h are equivalent if and only if =, where λ is a real-valued smooth function defined on the manifold and is called the conformal factor.

  9. Surface (topology) - Wikipedia

    en.wikipedia.org/wiki/Surface_(topology)

    For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space. Topological surfaces are sometimes equipped with additional information, such as a Riemannian metric or a complex structure, that connects them to other disciplines within mathematics, such as differential geometry and complex analysis.