Search results
Results from the WOW.Com Content Network
A negative real number −x has no real-valued square roots, but when x is treated as a complex number it has two imaginary square roots, + and , where i is the imaginary unit. In general, any non-zero complex number has n distinct complex-valued n th roots, equally distributed around a complex circle of constant absolute value .
In mathematics, a negative number is the opposite of a positive real number. [1] Equivalently, a negative number is a real number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset.
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
As a corollary of the rule, the number of negative roots is the number of sign changes after multiplying the coefficients of odd-power terms by −1, or fewer than it by an even number. This procedure is equivalent to substituting the negation of the variable for the variable itself.
The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers , and the square root symbol refers to the principal square root, the one with a positive imaginary part.
The solution in radicals (without trigonometric functions) of a general cubic equation, when all three of its roots are real numbers, contains the square roots of negative numbers, a situation that cannot be rectified by factoring aided by the rational root test, if the cubic is irreducible; this is the so-called casus irreducibilis ...
If the three roots are real and distinct, the discriminant is a product of positive reals, that is > If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative.
In the case of negative real numbers, the largest real part is shared by the two nonreal cube roots, and the principal cube root is the one with positive imaginary part. So, for negative real numbers, the real cube root is not the principal cube root. For positive real numbers, the principal cube root is the real cube root.