enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Motion planning - Wikipedia

    en.wikipedia.org/wiki/Motion_planning

    Exact motion planning for high-dimensional systems under complex constraints is computationally intractable. Potential-field algorithms are efficient, but fall prey to local minima (an exception is the harmonic potential fields). Sampling-based algorithms avoid the problem of local minima, and solve many problems quite quickly.

  3. Theta* - Wikipedia

    en.wikipedia.org/wiki/Theta*

    For the simplest version of Theta*, the main loop is much the same as that of A*. The only difference is the update _ vertex ( ) {\displaystyle {\text{update}}\_{\text{vertex}}()} function. Compared to A*, the parent of a node in Theta* does not have to be a neighbor of the node as long as there is a line-of-sight between the two nodes.

  4. File:Algorithms printable version.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Algorithms_printable...

    Printer-friendly PDF version of the Algorithms Wikibook. Licensing Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  5. File:Algorithms.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Algorithms.pdf

    The LaTeX source code is attached to the PDF file (see imprint). Licensing Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover ...

  6. Any-angle path planning - Wikipedia

    en.wikipedia.org/wiki/Any-angle_path_planning

    Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle. The result is a path that cuts directly through open areas and has relatively few turns. [ 1 ]

  7. Real-time path planning - Wikipedia

    en.wikipedia.org/wiki/Real-time_path_planning

    Real-Time Path Planning is a term used in robotics that consists of motion planning methods that can adapt to real time changes in the environment. This includes everything from primitive algorithms that stop a robot when it approaches an obstacle to more complex algorithms that continuously takes in information from the surroundings and creates a plan to avoid obstacles.

  8. Probabilistic roadmap - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_roadmap

    The probabilistic roadmap [1] planner is a motion planning algorithm in robotics, which solves the problem of determining a path between a starting configuration of the robot and a goal configuration while avoiding collisions. An example of a probabilistic random map algorithm exploring feasible paths around a number of polygonal obstacles

  9. Wavefront expansion algorithm - Wikipedia

    en.wikipedia.org/wiki/Wavefront_expansion_algorithm

    The plan is a trajectory from start to goal and describes, for each moment in time and each position in the map, the robot's next action. Path planning is solved by many different algorithms, which can be categorised as sampling-based and heuristics-based approaches. Before path planning, the map is discretized into a grid. The vector ...