enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Genome-wide CRISPR-Cas9 knockout screens - Wikipedia

    en.wikipedia.org/wiki/Genome-wide_CRISPR-Cas9...

    Over recent years, the genome-wide CRISPR screen has emerged as a powerful tool for studying the intricate networks of cellular signaling. [52] Cellular signaling is essential for a number of fundamental biological processes, including cell growth, proliferation, differentiation, and apoptosis.

  3. Synthetic genetic array - Wikipedia

    en.wikipedia.org/wiki/Synthetic_genetic_array

    Synthetic genetic array analysis is generally conducted using colony arrays on petriplates at standard densities (96, 384, 768, 1536). To perform a SGA analysis in S.cerevisiae, the query gene deletion is crossed systematically with a deletion mutant array (DMA) containing every viable knockout ORF of the yeast genome (currently 4786 strains). [9]

  4. CRISPR gene editing - Wikipedia

    en.wikipedia.org/wiki/CRISPR_gene_editing

    CRISPR-Cas9 genome editing techniques have many potential applications. The use of the CRISPR-Cas9-gRNA complex for genome editing [10] was the AAAS's choice for Breakthrough of the Year in 2015. [11] Many bioethical concerns have been raised about the prospect of using CRISPR for germline editing, especially in human embryos. [12]

  5. Conditional gene knockout - Wikipedia

    en.wikipedia.org/wiki/Conditional_gene_knockout

    Conditional gene knockout is a technique used to eliminate a specific gene in a certain tissue, such as the liver. [1] [2] This technique is useful to study the role of individual genes in living organisms. It differs from traditional gene knockout because it targets specific genes at specific times rather than being deleted from beginning of life.

  6. Gene knockout - Wikipedia

    en.wikipedia.org/wiki/Gene_knockout

    Additionally, gene knockouts are not always a good model for human disease as the mouse genome is not identical to the human genome, and mouse physiology is different from human physiology. The KO technique is essentially the opposite of a gene knock-in. Knocking out two genes simultaneously in an organism is known as a double knockout (DKO).

  7. Transcription activator-like effector nuclease - Wikipedia

    en.wikipedia.org/wiki/Transcription_activator...

    In addition, it has been used to engineer stably modified human embryonic stem cell and induced pluripotent stem cell (IPSCs) clones and human erythroid cell lines, [11] [28] to generate knockout C. elegans, [12] knockout rats, [13] knockout mice, [29] and knockout zebrafish. [14] [30] Moreover, the method can be used to generate knockin organisms.

  8. Yeast deletion project - Wikipedia

    en.wikipedia.org/wiki/Yeast_deletion_project

    The yeast deletion project, formally the Saccharomyces Genome Deletion Project, is a project to create data for a near-complete collection of gene-deletion mutants of the yeast Saccharomyces cerevisiae. Each strain carries a precise deletion of one of the genes in the genome. This allows researchers to determine what each gene does by comparing ...

  9. Genomic library - Wikipedia

    en.wikipedia.org/wiki/Genomic_library

    Whole genome shotgun sequencing versus Hierarchical shotgun sequencing. One major use of genomic libraries is hierarchichal shotgun sequencing, which is also called top-down, map-based or clone-by-clone sequencing. This strategy was developed in the 1980s for sequencing whole genomes before high throughput techniques for sequencing were available.