enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that x / log x is a good approximation to π(x) (where log here means the natural logarithm), in the sense that the limit of the quotient of the two functions π(x) and x / log x as x increases without ...

  3. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    Define, for real m and for natural numbers n and k, P k (m,n) as the number of numbers not greater than m with exactly k prime factors, all greater than p n. Furthermore, set P 0 (m,n) = 1. Then (,) = = + (,) where the sum actually has only finitely many nonzero terms. Let y denote an integer such that 3 √ m ≤ y ≤ √ m, and set n = π(y ...

  4. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  5. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Since no prime number divides 1, p cannot be in the list. This means that at least one more prime number exists that is not in the list. This proves that for every finite list of prime numbers there is a prime number not in the list. [4] In the original work, Euclid denoted the arbitrary finite set of prime numbers as A, B, Γ. [5]

  6. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    While the partial sums of the reciprocals of the primes eventually exceed any integer value, they never equal an integer. One proof [6] is by induction: The first partial sum is ⁠ 1 / 2 ⁠, which has the form ⁠ odd / even ⁠. If the n th partial sum (for n ≥ 1) has the form ⁠ odd / even ⁠, then the (n + 1) st sum is

  7. Meissel–Lehmer algorithm - Wikipedia

    en.wikipedia.org/wiki/Meissel–Lehmer_algorithm

    where ⌊ x ⌋ is the floor function, which denotes the greatest integer less than or equal to x and the p i run over all primes ≤ √ x. [1] [2] Since the evaluation of this sum formula becomes more and more complex and confusing for large x, Meissel tried to simplify the counting of the numbers in the Sieve of Eratosthenes. He and Lehmer ...

  8. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.

  9. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    The Chebyshev functions, especially the second one ψ (x), are often used in proofs related to prime numbers, because it is typically simpler to work with them than with the prime-counting function, π (x) (see the exact formula below.) Both Chebyshev functions are asymptotic to x, a statement equivalent to the prime number theorem.