Search results
Results from the WOW.Com Content Network
Alkyne metathesis is an organic reaction that entails the redistribution of alkyne chemical bonds. The reaction requires metal catalysts. Mechanistic studies show that the conversion proceeds via the intermediacy of metal alkylidyne complexes. [1] [2] [3] The reaction is related to olefin metathesis.
An alkyne trimerisation is a [2+2+2] cycloaddition reaction in which three alkyne units (C≡C) react to form a benzene ring. The reaction requires a metal catalyst. The process is of historic interest as well as being applicable to organic synthesis. [1] Being a cycloaddition reaction, it has high atom economy.
Metal alkyne complexes are intermediates in the semihydrogenation of alkynes to alkenes: C 2 R 2 + H 2 → cis-C 2 R 2 H 2. This transformation is conducted on a large scale in refineries, which unintentionally produce acetylene during the production of ethylene. It is also useful in the preparation of fine chemicals. Semihydrogenation affords ...
In the transition state for cyclization, the small substituent points toward the alkene. This model also explains the greater reactivity of cis alkenes relative to trans alkenes in [2+2] ketene cycloadditions. [5] (2) The configuration of the olefin is retained in the cycloaddition product.
An enyne metathesis is an organic reaction taking place between an alkyne and an alkene with a metal carbene catalyst forming a butadiene. This reaction is a variation of olefin metathesis. [1] The general scheme is given by scheme 1: When the reaction is intramolecular (in an enyne) it is called ring-closing enyne metathesis or RCEYM (scheme 2):
In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne (−C≡CH) is added to a carbonyl group (C=O) to form an α-alkynyl alcohol (R 2 C(−OH)−C≡C−R). [1] [2] When the acetylide is formed from acetylene (HC≡CH), the reaction gives an α-ethynyl alcohol. This process is often referred to as ethynylation.
The alkene then coordinates to the metal through a (3+2) cycloaddition, and the ligand dissociates from the metal catalyst. Hydrolysis of the olefin then yields the vicinal diol, and oxidation of the catalyst by a stoichiometric oxidant regenerates the metal catalyst to repeat the cycle. [ 2 ]
This is the ratio of the number of methyl groups to the number of benzene rings in all of the substrates. For example, in the disproportionation of toluene, the M/R ratio is 1. Side reactions in which alkanes are produced reduce the number of methyl groups available which decreases the M/R ratio.