enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions ), its eigenvalues are the possible position vectors of the particle.

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their ...

  5. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Mathematically, the duality between position and momentum is an example of Pontryagin duality. In particular, if a function is given in position space, f(r), then its Fourier transform obtains the function in momentum space, φ(p). Conversely, the inverse Fourier transform of a momentum space function is a position space function.

  6. Newton–Wigner localization - Wikipedia

    en.wikipedia.org/wiki/Newton–Wigner_localization

    Newton–Wigner localization (named after Theodore Duddell Newton and Eugene Wigner) is a scheme for obtaining a position operator for massive relativistic quantum particles. It is known to largely conflict with the Reeh–Schlieder theorem outside of a very limited scope.

  7. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    In the decimal (base-10) Hindu–Arabic numeral system, each position starting from the right is a higher power of 10. The first position represents 10 0 (1), the second position 10 1 (10), the third position 10 2 (10 × 10 or 100), the fourth position 10 3 (10 × 10 × 10 or 1000), and so on.

  8. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    The classical definition of angular momentum is =.The quantum-mechanical counterparts of these objects share the same relationship: = where r is the quantum position operator, p is the quantum momentum operator, × is cross product, and L is the orbital angular momentum operator.

  9. Decomposition of spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_spectrum...

    An example of an observable whose spectrum is purely absolutely continuous is the position operator of a free particle moving on the entire real line. Also, since the momentum operator is unitarily equivalent to the position operator, via the Fourier transform, it has a purely absolutely continuous spectrum as well.