Search results
Results from the WOW.Com Content Network
Facial expression recognition, classification 2006 [112] Binghamton University: Face Recognition Grand Challenge Dataset Up to 22 samples for each subject. Expressions: anger, happiness, sadness, surprise, disgust, puffy. 3D Data. None. 4007 Images, text Face recognition, classification 2004 [113] [114] National Institute of Standards and ...
The Facial Recognition Technology (FERET) database is a dataset used for facial recognition system evaluation as part of the Face Recognition Technology (FERET) program.It was first established in 1993 under a collaborative effort between Harry Wechsler at George Mason University and Jonathon Phillips at the Army Research Laboratory in Adelphi, Maryland.
A facial expression database is a collection of images or video clips with facial expressions of a range of emotions. Well-annotated ( emotion -tagged) media content of facial behavior is essential for training, testing, and validation of algorithms for the development of expression recognition systems .
The Caltech 101 data set was used to train and test several computer vision recognition and classification algorithms. The first paper to use Caltech 101 was an incremental Bayesian approach to one-shot learning, [ 4 ] an attempt to classify an object using only a few examples, by building on prior knowledge of other classes.
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
The 3D Morphable Model (3DMM) is a general framework that has been applied to various objects other than faces, e.g., the whole human body, [3] [4] specific body parts, [5] [6] and animals. [7] 3DMMs were first developed to solve vision tasks by representing objects in terms of the prior knowledge that can be gathered from that object class ...
OPPORTUNITY Activity Recognition Dataset Human Activity Recognition from wearable, object, and ambient sensors is a dataset devised to benchmark human activity recognition algorithms. None. 2551 Text Classification 2012 [188] [189] D. Roggen et al. Real World Activity Recognition Dataset Human Activity Recognition from wearable devices.
With traditional computer vision techniques, detecting facial landmarks could be challenging due to variations in lighting, head position, and occlusion, but Convolutional Neural Networks (CNNs), have revolutionized landmark detection by allowing computers to learn the features from large datasets of images. By training a CNN on a dataset of ...