Search results
Results from the WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The y-intercept point (,) = (,) corresponds to buying only 4 kg of sausage; while the x-intercept point (,) = (,) corresponds to buying only 2 kg of salami. Note that the graph includes points with negative values of x or y, which have no meaning in terms of the original variables (unless we imagine selling meat to the butcher).
If y=c is a horizontal asymptote of f(x), then y=c+k is a horizontal asymptote of f(x)+k; If a known function has an asymptote, then the scaling of the function also have an asymptote. If y=ax+b is an asymptote of f(x), then y=cax+cb is an asymptote of cf(x) For example, f(x)=e x-1 +2 has horizontal asymptote y=0+2=2, and no vertical or oblique ...
A function :, with domain X and codomain Y, is bijective, if for every y in Y, there is one and only one element x in X such that y = f(x). In this case, the inverse function of f is the function f − 1 : Y → X {\displaystyle f^{-1}:Y\to X} that maps y ∈ Y {\displaystyle y\in Y} to the element x ∈ X {\displaystyle x\in X} such that y = f ...
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...
A graph of the bivariate convex function x 2 + xy + y 2. Convex vs. Not convex. In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above or on the graph between the two points.
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
For instance, if f(x, y) = x 2 + y 2 − 1, then the circle is the set of all pairs (x, y) such that f(x, y) = 0. This set is called the zero set of f, and is not the same as the graph of f, which is a paraboloid. The implicit function theorem converts relations such as f(x, y) = 0 into functions.