enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    This can be read as "b to the power of n tends to +∞ as n tends to infinity when b is greater than one". Powers of a number with absolute value less than one tend to zero: b n → 0 as n → ∞ when | b | < 1. Any power of one is always one: b n = 1 for all n for b = 1

  4. Hyperoperation - Wikipedia

    en.wikipedia.org/wiki/Hyperoperation

    In mathematics, the hyperoperation sequence [nb 1] is an infinite sequence of arithmetic operations (called hyperoperations in this context) [1] [11] [13] that starts with a unary operation (the successor function with n = 0).

  5. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    A limit taking one of these indeterminate forms might tend to zero, might tend to any finite value, might tend to infinity, or might diverge, depending on the specific functions involved. A limit which unambiguously tends to infinity, for instance lim x → 0 1 / x 2 = ∞ , {\textstyle \lim _{x\to 0}1/x^{2}=\infty ,} is not considered ...

  6. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1 ...

  7. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    The sequence starts with a unary operation (the successor function with n = 0), and continues with the binary operations of addition (n = 1), multiplication (n = 2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), etc. Various notations have been used to represent hyperoperations. One such notation is (,).

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    Whether or not a rational number has a terminating expansion depends on the base. For example, in base-10 the number 1/2 has a terminating expansion (0.5) while the number 1/3 does not (0.333...). In base-2 only rationals with denominators that are powers of 2 (such as 1/2 or 3/16) are terminating.

  9. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    Geometrically, when moving increasingly farther to the right along the -axis, the value of / approaches 0. This limiting behavior is similar to the limit of a function lim x → x 0 f ( x ) {\textstyle \lim _{x\to x_{0}}f(x)} in which the real number x {\displaystyle x} approaches x 0 , {\displaystyle x_{0},} except that there is no real number ...